Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Adicionar filtros

Tipo de documento
Intervalo de ano
1.
biorxiv; 2024.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2024.02.16.580615

RESUMO

Newly emerged SARS-CoV-2 variants like JN.1, and more recently, the hypermutated BA.2.87.1, have raised global concern. We recruited two groups of participants who had BA.5/BF.7 breakthrough infection post three doses of inactivated vaccines: one group experienced subsequent XBB reinfection, while the other received the XBB-containing trivalent WSK-V102C vaccine. Our comparative analysis of their serum neutralization activities revealed that the WSK-V102C vaccine induced stronger antibody responses against a wide range of variants, notably including JN.1 and the highly escaped BA.2.87.1. Furthermore, our investigation into specific mutations revealed that fragment deletions in NTD significantly contribute to the immune evasion of the BA.2.87.1 variant. Our findings emphasize the necessity for ongoing vaccine development and adaptation to address the dynamic nature of SARS-CoV-2 variants.


Assuntos
Dor Irruptiva
2.
biorxiv; 2023.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2023.12.19.572469

RESUMO

Immune evasion is a pivotal force shaping the evolution of viruses. Nonetheless, the extent to which virus evolution varies among populations with diverse immune backgrounds remains an unsolved mystery. Prior to the widespread SARS-CoV-2 infections in December 2022 and January 2023, the Chinese population possessed a markedly distinct (less potent) immune background due to its low infection rate, compared to countries experiencing multiple infection waves, presenting an unprecedented opportunity to investigate how the virus has evolved under different immune contexts. We compared the mutation spectrum and functional potential of BA.5.2.48, BF.7.14, and BA.5.2.49--variants prevalent in China--with their counterparts in other countries. We found that mutations in the RBD region in these lineages were more widely dispersed and evenly distributed across different epitopes. These mutations led to a higher ACE2 binding affinity and reduced potential for immune evasion compared to their counterparts in other countries. These findings suggest a milder immune pressure and less evident immune imprinting within the Chinese population. Despite the emergence of numerous immune-evading variants in China, none of them exhibited a transmission advantage. Instead, they were replaced by the imported XBB variant with stronger immune evasion since April 2023. Our findings demonstrated that the continuously changing immune background led to varying evolutionary pressures on SARS-CoV-2. Thus, in addition to the viral genome surveillance, immune background surveillance is also imperative for predicting forthcoming mutations and understanding how these variants spread in the population.


Assuntos
Síndrome Respiratória Aguda Grave
3.
biorxiv; 2023.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2023.09.14.557682

RESUMO

As the SARS-CoV-2 virus continues to evolve, novel XBB sub-lineages such as XBB.1.5, XBB.1.16, EG.5, HK.3 (FLip), and XBB.2.3, as well as the most recent BA.2.86, have been identified and aroused global concern. Understanding the efficacy of current vaccines and the immune system's response to these emerging variants is critical for global public health. In this study, we evaluated the neutralization activities of sera from participants who received COVID-19 inactivated vaccines, or a booster vaccination of the recently approved tetravalent protein vaccine in China (SCTV01E), or had contracted a breakthrough infection with BA.5/BF.7/XBB virus. Comparative analysis of their neutralization profiles against a broad panel of 30 SARS-CoV-2 sub-lineage viruses revealed that strains such as BQ.1.1, CH.1.1, and all the XBB sub-lineages exhibited heightened resistance to neutralization than previous variants, however, despite the extra mutations carried by emerging XBB sub-lineages and BA.2.86, they did not demonstrate significantly increased resistance to neutralization compared to XBB.1.5. Encouragingly, the SCTV01E booster vaccination consistently induced robust and considerably higher neutralizing titers against all these variants than breakthrough infection did. Cellular immunity assays also showed that the SCTV01E booster vaccination elicited a higher frequency of virus-specific memory B cells but not IFN-{gamma} secreting T cells. Our findings underline the importance of developing novel multivalent vaccines to more effectively combat future viral variants.


Assuntos
Dor Irruptiva , COVID-19
4.
biorxiv; 2023.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2023.02.06.527236

RESUMO

The evolution of SARS-CoV-2 is characterized by the emergence of new variants with a sheer number of mutations compared to their predecessors, which conferred resistance to pre-existing antibodies and/or increased transmissibility. The recently emerged Omicron subvariants also exhibit a strong tendency for immune evasion, suggesting adaptive evolution. However, previous studies have been limited to specific lineages or subsets of mutations, the overall evolutionary trajectory of SARS-CoV-2 and the underlying driving forces are still not fully understood. In this study, we analyzed the mutations present in all open-access SARS-CoV-2 genomes (until November 2022) and correlated the mutation's incidence and fitness change with its impact on immune evasion and ACE2 binding affinity. Our results showed that the Omicron lineage had an accelerated mutation rate in the RBD region, while the mutation incidence in other genomic regions did not change dramatically over time. Moreover, mutations in the RBD region (but not in any other genomic regions) exhibited a lineage-specific pattern and tended to become more aggregated over time, and the mutation incidence was positively correlated with the strength of antibody pressure on the specific position. Additionally, the incidence of mutation was also positively correlated with changes in ACE2 binding affinity, but with a lower correlation coefficient than with immune evasion. In contrast, the mutation's effect on fitness was more closely correlated with changes in ACE2 binding affinity than immune evasion. In conclusion, our results suggest that immune evasion and ACE2 binding affinity play significant and diverse roles in the evolution of SARS-CoV-2.


Assuntos
Convulsões , Síndrome Respiratória Aguda Grave
5.
researchsquare; 2023.
Preprint em Inglês | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-2554999.v1

RESUMO

The evolution of SARS-CoV-2 is characterized by the emergence of new variants with a sheer number of mutations compared to their predecessors, which conferred resistance to pre-existing antibodies and/or increased transmissibility. The recently emerged Omicron subvariants also exhibit a strong tendency for immune evasion, suggesting adaptive evolution. However, previous studies have been limited to specific lineages or subsets of mutations, the overall evolutionary trajectory of SARS-CoV-2 and the underlying driving forces are still not fully understood. In this study, we analyzed the mutations present in all open-access SARS-CoV-2 genomes (until November 2022) and correlated the mutation’s incidence and fitness change with its impact on immune evasion and ACE2 binding affinity. Our results showed that the Omicron lineage had an accelerated mutation rate in the RBD region, while the mutation incidence in other genomic regions did not change dramatically over time. Moreover, mutations in the RBD region (but not in any other genomic regions) exhibited a lineage-specific pattern and tended to become more aggregated over time, and the mutation incidence was positively correlated with the strength of antibody pressure on the specific position. Additionally, the incidence of mutation was also positively correlated with changes in ACE2 binding affinity, but with a lower correlation coefficient than with immune evasion. In contrast, the mutation’s effect on fitness was more closely correlated with changes in ACE2 binding affinity than immune evasion. In conclusion, our results suggest that immune evasion and ACE2 binding affinity play significant and diverse roles in the evolution of SARS-CoV-2.


Assuntos
Convulsões , Síndrome Respiratória Aguda Grave
6.
biorxiv; 2022.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2022.01.05.474231

RESUMO

A new variant of concern for SARS-CoV-2, Omicron (B.1.1.529), was designated by the World Health Organization on November 26, 2021. This study analyzed the viral genome sequencing data of 108 samples collected from patients infected with Omicron. First, we found that the enrichment efficiency of viral nucleic acids was reduced due to mutations in the region where the primers anneal to. Second, the Omicron variant possesses an excessive number of mutations compared to other variants circulating at the same time (62 vs. 45), especially in the Spike gene. Mutations in the Spike gene confer alterations in 32 amino acid residues, which was more than those observed in other SARS-CoV-2 variants. Moreover, a large number of nonsynonymous mutations occur in the codons for the amino acid residues located on the surface of the Spike protein, which could potentially affect the replication, infectivity, and antigenicity of SARS-CoV-2. Third, there are 53 mutations between the Omicron variant and its closest sequences available in public databases. Many of those mutations were rarely observed in the public database and had a low mutation rate. In addition, the linkage disequilibrium between these mutations was low, with a limited number of mutations (6) concurrently observed in the same genome, suggesting that the Omicron variant would be in a different evolutionary branch from the currently prevalent variants. To improve our ability to detect and track the source of new variants rapidly, it is imperative to further strengthen genomic surveillance and data sharing globally in a timely manner.

7.
medrxiv; 2021.
Preprint em Inglês | medRxiv | ID: ppzbmed-10.1101.2021.06.24.21255875

RESUMO

Pakistan has been severely affected by the COVID-19 pandemic. To investigate the initial introductions and transmissions of the SARS-CoV-2 in the country, we performed the largest genomic epidemiology study of COVID-19 in Pakistan and generated 150 complete SARS-CoV-2 genome sequences from samples collected before June 1, 2020. We identified a total of 347 variants, 29 of which were over-represented in Pakistan. Meanwhile, we found over one thousand intra-host single-nucleotide variants. Several of them occurred concurrently, indicating possible interactions among them. Some of the hypermutable positions were not observed in the polymorphism data, suggesting strong purifying selections. The genomic epidemiology revealed five distinctive spreading clusters. The largest cluster consisted of 74 viruses which were derived from different geographic locations and formed a deep hierarchical structure, indicating an extensive and persistent nation-wide transmission of the virus that was probably contributed by a signature mutation of this cluster. Twenty-eight putative international introductions were identified, several of which were consistent with the epidemiological investigations. No progenies of any of these 150 viruses have been found outside of Pakistan, most likely due to the nonphmarcological intervention to control the virus. This study has inferred the introductions and transmissions of SARS-CoV-2 in Pakistan, which could provide a guidance for an effective strategy for disease control.


Assuntos
COVID-19
8.
biorxiv; 2020.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2020.07.30.230102

RESUMO

BackgroundIn response to the current COVID-19 pandemic, it is crucial to understand the origin, transmission, and evolution of SARS-CoV-2, which relies on close surveillance of genomic diversity in clinical samples. Although the mutation at the population level had been extensively investigated, how the mutations evolve at the individual level is largely unknown, partly due to the difficulty of obtaining unbiased genome coverage of SARS-CoV-2 directly from clinical samples. MethodsEighteen time series fecal samples were collected from nine COVID-19 patients during the convalescent phase. The nucleic acids of SARS-CoV-2 were enriched by the hybrid capture method with different rounds of hybridization. ResultsBy examining the sequencing depth, genome coverage, and allele frequency change, we demonstrated the impeccable performance of the hybrid capture method in samples with Ct value < 34, as well as significant improvement comparing to direct metatranscriptomic sequencing in samples with lower viral loads. We identified 229 intra-host variants at 182 sites in 18 fecal samples. Among them, nineteen variants presented frequency changes > 0.3 within 1-5 days, reflecting highly dynamic intra-host viral populations. Meanwhile, we also found that the same mutation showed different frequency changes in different individuals, indicating a strong random drift. Moreover, the evolving of the viral genome demonstrated that the virus was still viable in the gastrointestinal tract during the convalescent period. ConclusionsThe hybrid capture method enables reliable analyses of inter- and intra-host variants of SARS-CoV-2 genome, which changed dramatically in the gastrointestinal tract; its clinical relevance warrants further investigation.


Assuntos
COVID-19
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA